Clinical Results of a Medical Error Reduction Software Program in Radiation Oncology

by Ed Kline

RadPhysics Services LLC

Acknowledgements

A debt of appreciation goes out to the physicians, management and staff of

located in Albuquerque, NM

for their permission to use the MERP medical error reduction software program in their clinic and share their experience.

Introduction

- Patient safety
 - Freedom from accidental injury due to medical care, or absence of medical errors^{1,2}

<u>or</u>

- Absence of misuse of services^{3,4}
- In radiation oncology, variety of injuries and errors can occur in the diagnostic imaging or therapeutic treatment delivery processes

¹ Hurtado M, Swift E, Corrigan JM, eds. *Envisioning the National Health Care Quality Report*. Washington, DC: <u>National Academy of Sciences</u>; 2001.

²McNutt R, Abrams R, Arons D. *Patient Safety Efforts Should Focus on Medical Errors*. <u>JAMA</u>. 2002;287(15):1997-2001.

³ Department of Health and Human Services. *The Challenge and Potential for Assuring Quality of Health Care for the 21st Century.* Washington, DC: <u>Department of Health and Human Services</u>; 2000.

⁴ The President's Advisory Commission on Consumer Protection and Quality in the Health Care Industry. *Quality First: Better Health Care for All Americans*; 1998.

Introduction

- This presentation describes the design, implementation, and results of two QA/medical error reduction programs
 - Paper-based
 - Software
- Both programs are designed for
 - Reducing preventable systems-related medical errors (i.e., sentinel events, "near misses")
 - Preventing violations of regulatory requirements (i.e., State/NRC, CMS)
 - Ensuring compliance with recommended standards (i.e., JCAHO, ACR, ACRO, etc.)

- Institute of Medicine (IOM) report⁵
 - Focused a great deal of attention on the issue of medical errors and patient safety
 - 44,000 to 98,000 deaths per year in U.S. hospitals each year as the result of medical errors
 - 10,000 deaths per year in Canadian hospitals
 - Exceeds annual death rates from road accidents,
 breast cancer, and AIDS combined in U.S.

⁵ *To Err is Human: Building a Safer Health System.* Institute of Medicine (IOM). <u>The National Academies</u> (11/29/99).

- IOM Costs⁶
 - Approximately \$37.6 billion per year
 - About \$17 billion are associated with preventable errors
 - Of that \$17 billion, about \$8 to \$9 billion are for direct health care costs

⁶ *To Err is Human: Building a Safer Health System.* Institute of Medicine (IOM). <u>National Academies</u> (11/29/99).

- Federal initiatives⁷ taken by former President Clinton on 2/22/00 based on IOM recommendations⁸
 - Comprehensive strategy for health providers to reduce medical errors
 - Creation of external reporting systems to identify and learn from errors so as to prevent future occurrences
 - Creation of national patient safety center to set goals
 - At least 50% reduction of errors over 5 years

⁷ Announced by President Clinton and senior administration officials in James S. Brady Press Briefing Room on February 2, 2000.

⁸ Recommendations issued in report entitled *To Err is Human: Building a Safer Health System* by the Institute of Medicine (IOM) of the National Academies (11/29/99).

- Key legislation
 - Patient Safety Quality Improvement Act⁹
 - Certifies patient safety organizations in each State to collect data and report on medical errors
 - State Patient Safety Centers
 - In past 5 years, 6 states have enacted legislation supporting creation of state patient safety centers
 - 5 of the 6 states now operate patient safety centers
 - Separate mandatory reporting systems for serious adverse events
 - Centers are housed within state regulatory agencies

⁹ Reducing Medical Errors, Issue Module, <u>Kaiser EDU.org</u>, Accessed through <u>www.kaiseredu.org</u>.

- Patient safety centers include¹⁰
 - The Florida Patient Safety Corporation
 - The Maryland Patient Safety Center
 - The Betsy Lehman Center for Patient Safety and Medical Error Reduction (Massachusetts)
 - The New York Center for Patient Safety
 - The Oregon Patient Safety Commission
 - The Pennsylvania Patient Safety Authority

¹⁰ State Patient Safety Centers: A New Approach to Promote Patient Safety, The Flood Tide Forum, National Academy for State Health Policy, 10/04, Accessed through www.nashp.org.

- State reporting: adverse event reporting systems^{11, 12}
 - Mandatory reporting: Colorado, Florida, Kansas,
 Nebraska, New York, Ohio, Pennsylvania, Rhode Island,
 South Carolina, South Dakota, Tennessee, Texas,
 Washington, Georgia, Maine, Maryland, Minnesota,
 Nevada, Utah, Colorado, Illinois, Indiana, Kansas,
 Nevada
 - Voluntary reporting: District of Columbia, New Mexico, North Carolina, Oregon, Wyoming
 - Considering new legislation: Arizona, California
 - Mandatory reporting but considering new legislation:
 Massachusetts, New Jersey

¹¹ National Conference of State Legislatures, National Academy for State Health Policy, 12/03, Accessed through www.nashp.org.

¹² Rosenthal, J., Booth, M. *Maximizing the Use of State Adverse Event Data to Improve Patient Safety*, National Academy for State Health Policy, 10/05.

- JCAHO revises standards
 - Patient safety standards effective 7/1/01
 - Requires all JCAHO hospitals (5,000) to implement ongoing medical error reduction programs
 - Almost 50 percent of JCAHO standards are directly related to safety¹³

¹³ Patient Safety - Essentials for Health Care, 2nd edition, <u>Joint Commission on Accreditation of Healthcare Organizations</u>. Oakbrooke Terrace, IL: Department of Publications, 2004.

- JCAHO's sentinel event policy¹⁴
 - Implemented in 1996
 - Identify sentinel events
 - Take action to prevent their recurrence
 - Complete a thorough and credible root cause analysis
 - Implement improvements to reduce risk
 - Monitor the effectiveness of those improvements
 - Root cause analysis must focus on process and system factors
 - Improvements must include documentation of a risk-reduction strategy and internal corrective action plan
 - Action plan must include measurements of the effectiveness of process and system improvements to reduce risk

¹⁴ Sentinel Event Policies and Procedures - Revised: July 2002, Joint Commission on Accreditation of Healthcare Organizations, Accessed through www.jcaho.org/accredited+organizations/long+term+care/sentinel+events/index.htm.

- JCAHO's Office of Quality Monitoring
 - Receives, evaluates and tracks complaints and reports of concerns about health care organizations relating to quality of care issues
 - Conducts unannounced on-site evaluations
- JCAHO and CMS agreement¹⁵
 - Effective 9/16/04
 - Working together to align Hospital Quality Measures (JC's ORYX Core Measures and CMS'7th Scope of Work Quality of Core Measures)

15 Joint Commission, CMS to Make Common Performance Measures, Joint Commission on Accreditation of Healthcare Organizations, Accessed through www.jcaho.org/accredited+organizations/long+term+care/sentinel+events.

- CMS quality incentives¹⁶
 - Quality Improvement Organizations (QIOs)
 - Contracted by CMS to operate in every State
 - 67% of QIOs perform independent quality audits
 - Premier Hospital Quality Initiative
 - 3-year demonstration project with 280 hospitals recognizes and provides financial reward
 - CMS partnership with Premier Inc., nationwide purchasing alliance
 - Hospitals in top 20% of quality for 5 clinical areas get financial reward
 - Top decile gets 2% Diagnosis Related Group (DRG) bonus
 - 2nd decile get 1% DRG bonus
 - In year 3, hospitals performing below 9th and 10th decile baseline levels, DRG payments reduced 1% and 2%, respectively

¹⁶ Medicare Looks for Ways to Boost Quality Care Comments Sought on New Plan for Quality Improvement Organizations, Centers for Medicare & Medicare Services (CMS), Accessed through www.cms.hhs.gov.

- CMS quality incentives
 - CMS consumer website
 - CMS contracted with NQF & worked with JCAHO to develop hospital quality measures for public reporting
 - In 4/05, hospital quality data became available at www.HospitalCompare.hhs.gov or 1-800-MEDICARE
 - Data indicators¹⁷
 - In 2006, hospitals reporting quality data to Medicare receive 3.7% increase in inpatient payments
 - Non-reporters receive 3.3% increase
 - Data covers 10 quality indicators for cardiology
 - Plans are to expand into other disciplines

¹⁷ Medicare to Pay Hospitals for Reporting Quality Data, Modernhealthcare, accessed through www.modernhealthcare.com.

- CMS quality incentives
 - Announced 8/23/05, Medicare/State Children's Health Insurance Program (SCHIP) Quality Initiative
 - Pay-For-Performance (P4P)¹⁸
 - 12 states have adopted some form
 - Performance measurement is critical for reimbursement
 - Efforts are to align payment with quality
 - Working with JCAHO, NCQA, HQA, AQA, NQF, medical specialty societies, AHRQ, and VA
 - Medicare service payments are tied to efficiency, economy, and quality of care standards

¹⁸ Letter Announcing Medicare/State Children's Health Insurance Program (SCHIP) Quality Initiative, Centers for Medicare & Medicare Services (CMS), Accessed through www.cms.hhs.gov.

- CMS quality incentives
 - 104 P4P provider programs in US¹⁹
 - P4P attempts to "introduce market forces and competition to promote payment for quality, access, efficiency, and successful outcomes."
 - Expect P4P to extend beyond HMOs to include specialties, PPOs, self insured, and consumer-direct programs.
 - Senators Charles Grassley (R-Iowa) and Max Baucus (D-Mont) introduced Medicare Value Purchasing (MVP) Act of 2005. Requires Medicare implement a P4P program covering at least a portion of payments made.²⁰

¹⁹ Pay for Performance's Small Steps of Progress. <u>PricewaterhouseCoopers</u>. 8/2/05. Accessed through <u>www.pwchealth.com</u>
²⁰ Baker, G., Carter, B., Provider Pay for Performance Incentive Programs: 2004 National Study Results. 8/2/05. Accessed through <u>www.medvantageinc.com</u>

- CMS quality incentives
 - 2006 Physician Voluntary Reporting Program²¹
 - Physicians voluntarily report information to CMS
 - 36 evidence-based measures
 - Information collected through Healthcare Common Procedure Coding System (HCPCS)
 - CMS will provide feedback on physician's level of performance

²¹ Medicare Takes Key Step Toward Voluntary Quality Reporting for Physicians, Centers for Medicare & Medicare Services (CMS), Accessed through www.cms.hhs.gov.

Now in US

- 3rd annual "HealthGrades Patient Safety in American Hospitals" assessment report for Medicare patients²²
 - 1.24 million patient safety accidents, or medical errors, occurred between 2002 and 2004, up from 1.8 million between 2001 and 2003
 - Over the same time period
 - 304,702 deaths were caused by medical errors
 - 250,246 of which were potentially preventable
 - 570,000 preventable deaths were caused by medical errors to the entire population (inclusing Medicare) between 2001 and 2004
 - Medical errors cost \$500 billion a year in avoidable medical expenses – approximately 30% of all health care costs.²³

²² 250,000 Medicare Patients Killed by Preventable Medical Errors. Protecting Your Rights. <u>Association of Trial Lawyers of America</u> (4/10/06).

²³ Fixing Hospitals, Forbes, (6/20/05).

Now in Canada

- 185,000 adverse events occur annually in Canadian hospitals²⁴
- Approximates a 7.5% error rate
- Similar rates found in other counries

²⁴ Lee RC, *Life*, *Death*, *and Taxes: Risk Management in Health Care*. Canadian Operations Society Annual Meeting (2005).

Consumer Beliefs²⁵

- 40% do not believe nation's quality of health care has improved
- 48% are concerned about the safety of health care
- 55% are dissatisfied with quality of health care
- 34% say they or family member experienced a medical error in their life

Consumer Beliefs²⁶

- 92% say reporting serious medical errors should be required
 - 63% want information released publicly
- 79% say requiring hospitals to develop systems to avoid medical errors would be "very effective"
- 35% have seen information comparing of health plans and hospitals in last year
- 19% have used comparative quality data information about health plans, hospitals, or other providers to make decisions about their care
- 11-14% have sued that experienced a medical error²⁷

²⁶ Five Years After IOM on Medical Errors, Nearly Half of All Consumers Worry About the Safety of Their Health Care. Kaiser Family Foundation. 11/17/04. Accessed through www.kff.org.

²⁷ Duffy J, *The QAIP* Quest. <u>Advance News Magazines</u>. Accessed thru www.health-care-it.advanceweb.com.

Radiation Oncology Errors

- Not well established
- No comprehensive numbers available for number of errors resulting in death²⁸
- Reported error rates range 0.1% to 0.2% of fields treated²⁹
- Studies not relying on self-reporting show actual rates of up to 3% 30

^{28, 29, 30} French, J, *Treatment Errors in Radiation Therapy*. Radiation Therapist, Fall 2002, Vol. 11, No. 2; 2002.

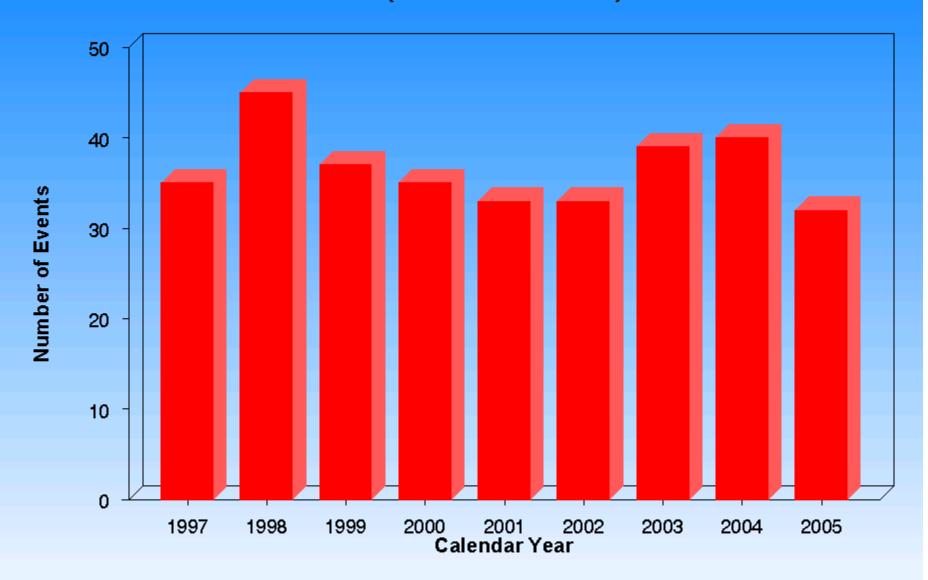
Significant Medical Events in Radiation Oncology

Incidents	Author	Time Interval	Event	Total Patients	Outcome	Direct Causes
Panama	Vatnisky S, et al., Radiother Oncol., 2001	2001	Overdose	23	8 - Deaths 15 - Severe late complications	Incorrect entry of shielding blocks in Tx planning computer
UK	McKenzie AL, British Institute of Radiology, 1996	1988	Overdose (+25%)	207		Teletherapy activity calculation error
UK	McKenzie AL, British Institute of Radiology, 1996	1982- 1991	Underdose (-25%)	1,045		Misunderstanding of algorithm in Tx planning computer
World Wide	IAEA, 2000		Overdose (up to 166%)	50	Several - Deaths or serious injury	Miscalibration of dosimeters; incorrect calc techniques, calibration of Tx machines, and use of Tx machines
US	Ricks CR, REAC/TS Radiation Incident Registry, 1999	1944- 1999	Overdose		13 - Deaths (OH - 10, PA - 1, TX - 2) 1 - Serious Injury (WA)	Incorrect calibrations, incorrect computer programming, equipment maintenance/repair negligence
US	Sickler M, St. Petersburg Times, 2005	12 Months	Overdose (+50% or >)	77	19 - Unsafe Levels	Programming error using wrong formula in Tx planning computer, no independent second dose verification

Medical Error Rates in Radiation Oncology – Table 1

Study	Author	Time Interval	Crse of Tx	Total Tx Fx's	Total Tx Fields	Tx	Error Specifics	Error Rate
UK	Sutherland WH, Topical Reviews in Radiother and Oncol, 1980	Over 6 years between 1970-1980					 - Potential mistakes (found in checks): 4,122 - Potential errors of >5% from Rx dose: 742 	2.1% - 4% per year
US	Swann-D'Emilia B, Med Dosime, 1990	1988-1989					87 misadministrations	<0.1%: based on no. of fields Tx'ed
US	Muller-Runkel R, et al., 1991	1987-1990					Before R&V: 39 major,25 minor errorsAfter R&V: 4 major, 5 minor errors	90% overall reduction
	Leunens G, et al., Radiother Oncol, 1992	9 months					Data transfer errors: 139 of 24,128	Affected 26% of overall treatments Sig. potential 5%
Italy	Calandrino R, et al., Radiother Oncol, 1993	9/91-6/92					Out of 890 calculations: - 33 total errors - 17 serious errors	3.7%: total error rate
Italy	Valli MC, et al., Radiother Oncol, 1994							10.5%: incorrect or missing data

Medical Error Rates in Radiation Oncology – Table 2


Study	Author	Time Interval	Crse of Tx	Total Tx Fx's	Total Tx Fields	Tx Field Errors	Error Specifics	Error Rate
	Noel A, et al., Radiother Oncol, 1995	5 years					Of 7519 treatments: 79 total errors	1.05%: errors per treatment
							- Of 79, 78 are human origin	
							- Of 78, 39 would have > 10% dose Δ	
US	Kartha PKI, Int J Radiat Oncol	1997					Error rates per patient setup	1.4%: linear accelerators
	Biol Phys, 1997							3%: cobalt units
US	Macklis RM, et al., J Clin Oncol, 1998	1 year	1,925		93,332	168	15%: causally related to R&V	0.18%: reported error rate/year
US	Fraas BA, et al., Int J Radiat Oncol Biol Phys,	7/96- 9/97		~34,000	~114,000			0.44%: Tx fractions
	1998							0.13%: Tx fields
Belgium	Barthelemy- Brichant N, et al., Radiother Oncol, 1999	6 months						3.22%: of all delivered Tx fields had at least 1 error
Canada	Yeung TK, Abstract- NEORCC, 1996	1994						3.3%

Medical Error Rates in Radiation Oncology – Table 3

Study	Author	Time Interval	Crse of Tx	Total Tx Fx's	Total Tx Fields	Tx Field Errors	Error Specifics	Error Rate
Canada	Pegler R, et al., Abstract-Clin Invest Med, 1999	2 years						0.12 - 0.06%
US	Pao WJ, et al., Abstract-ACSO, 2001	6 years	17,479 avg./yr.					0.17% avg./year per patient
Canada	French J, Radiat Ther, 2002	1/1/96- 9/31/01	11,355	195,100	483,741	631	177 total incidents -20: correctable	0.13%: overall (fields tx'ed incorrect/ total no. fields tx'ed)
							- 129: noncorrectable and clinic. sig.	0.32%: errors/fraction
							- 28: noncorrectable and potentially clinically sig.	0.037%: errors/field
Canada	Grace H, et al., Int J Radiat Oncol	1/1/97- 12/31/02	28,136				555 total errors	1.97%: error rate per patient
	Biol Phys, 2005						- 87 (15.6%): incorrect programming in R&V	0.29%: error rate per fraction (7/00 - 12/02)
US	Klein E, et al., J of Appl Clin Med Phys, 2005	30 months	3,964					0.48 to <0.1%: for diff methods of detection w/R&V

NRC Reported Medical Events

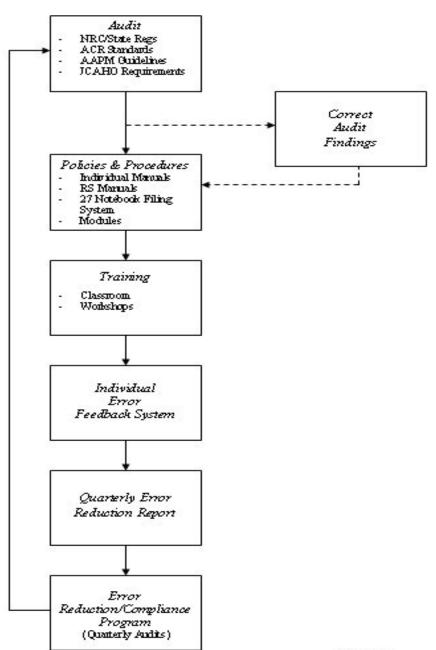
(10 CFR Part 35)

Paper-Based Model

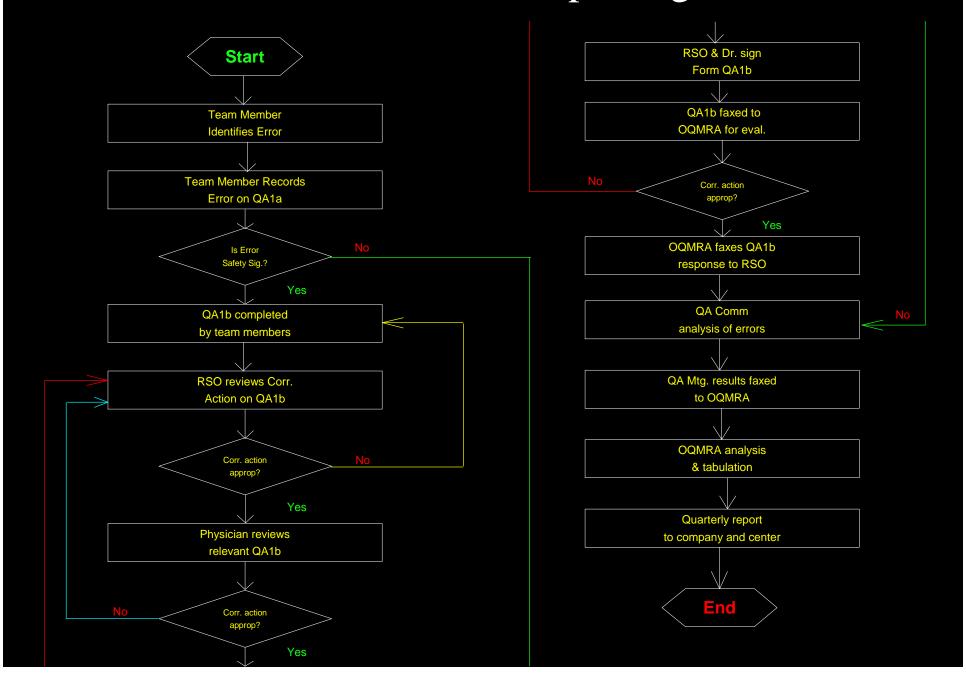
Objective of Paper-Based QA/Medical Error Reduction Program

- Provide a unified, total quality management and continuous improvement program
- Minimize occurrence of errors identified in the patient treatment process and regulatory arena
- Designed for 17 geographically dispersed radiation oncology clinics
- Located in 9 states of varying regulatory oversight and enforcement philosophy

Design of a Paper-Based QA/Medical Error Reduction Program


- Established a consistent set of QA procedures for the 17 facilities following the strictest state requirements in which each facility resides.
- Analyzed the process of delivering radiation therapy to identify the steps used in all aspects of this modality.
- Developed a reporting codification system for errors detected, and the appropriate forms and procedures for reporting these errors. This includes a staging system for classifying the importance of an error.

Design of a Paper-Based QA/Medical Error Reduction Program


- Provided an internal feed-back mechanism of corrective action to close the loop
 - Independent review/recommendations for corrective action regarding <u>all</u> self-identified significant errors/violations
- Produced a quarterly report summarizing errors/violations
 - Perform trend analysis of reported errors at center and company levels
 - Recommended company wide corrective actions based on results of trend analysis

RPS

QA Implementation Process for a Radiation Oncology Center

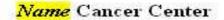
Unintended Deviation Reporting Process

The Unintended Deviation System

- Name was selected to convey an unintentional error discovered either by the one having committed the error or by another physician/staff member.
- Management emphasizes that self-identification and reporting of errors will not result in disciplinary action.
- Provides for identification, evaluation, and documentation of all errors within the process of radiation therapy delivery.
- Suggests possible causes and solutions for correction of individual errors as well as programmatic errors with discoverable trends.

Definition - Unintended Deviation

- An unintended deviation is any error in the planned patient simulation, setup, treatment, or data entry in these processes.
- Any deviation from the planned course of treatment
- Any error in calculation
- Any missing or incomplete information
- Any failure to perform or follow required quality assurance and radiation safety policies or procedures
- Unintended deviations can be classified as:
 - Pre or post-tx error
 - A minor unintended deviation (Level 3-5)
 - A significant unintended deviation (Level 1-2)
 - A Recordable Event
 - A Misadministration


Code Ide	ntified	Description/SL/Process/Resp. Party	Code	Ide	entifie	ed	Description/SL/Process/Resp. Party	Code	Ide	ntified	Description/SL/Process/Resp. Party
Treatment P	lannir	ng: Data Entry	Patient	Simu	ulatio	on		1630 Wrong inverse sq. factor 2 ◆ P			(Wrong inverse sq. factor 2 ◆ P
1010 Treatment site 2 ◆ P						Patient Setup	1631	Н		Math error 3 ◆ P	
1011	\Box	Plan identification 3 P	1310	П	П		Pt position not iso to midline (SAD) 3 💠 T	1632	\vdash	HH	Calc, using incorr, dose 2 ◆ P
1012		Field names and numbers 3 ◆ P	1311				Pt position not to specified SSD 3 ◆ T	1633	П		Tx plan not approved 1 ◆ M
R & V: Data	Entry		1320	П	П		Missing AP SSD 2 ◆ T	1640	П	\Box	MiscP
1110	100	Course 4 ◆ M	1321				Missing PA SSD 2 ◆ T	222225	30	000	Computer Calculations
1111		Prescription site 2 ◆ M	1322				Missing RL/Medial SSD 2 ◆ T	1650	П		Incorr. energy 1 ◆ P
1112		Technique 2 ◆ M	1323				Missing LL/Medial SSD 2 ◆ T	1651			Incorr. mode of Tx 1 ◆ P
1113		Modality (photons or electrons) 1 ◆ M	1324				Missing calc. pt. SSD 2 ◆ T	1652		100	Incorr. field size 3 ◆ P
1114		Dose specification 2 ◆ M	1325				Table vert. does not agree w/SSD-3 ◆ T	1653	П		Incorr. asymmetric jaw 3 ◆ P
1115		Depth 2 ◆ M	1326				SSD read incorrectly 2 ◆ T	1654	П	2	Incorr. SSD 3 ◆ P
1116		Total dose 1 ◆ M	1330				Separation does not agree w/SSD 3 ◆ T	1655			Incorr depth 2 ◆ P
1117		Fraction dose 1 ◆ M	1331	П	П		Separation missing 2 ◆ T	1656	П		Incorr. gantry angle 3 ◆ P
1118		Fractions 2 M	1340				Incorrect contour 3 ◆ T	1657			Incorr. coll. angle 3 ◆ P
1119		Pattern 2 ◆ M	1350				Failure to capture all Tx fields 2 ◆ T	1658			Incorr.tray factor 3 ◆ P
1120		Prescription nate 2 ◆ M	1351	Ш			Failure to capture setup fields 2 ◆ T	1659			Incorr. wedge angle 2 ◆ P
1121		Bect. Approval before 1" Fx (R&V) 1 ◆ M	1360				Setup instructions incorrect 3 ◆ T	1660		100	Incorr. bolus 3 ◆ P
1130		MiscM	1361	П	П		Setup instructions miss./incomp. 3 🌩 T	1661	П	$\Pi\Pi$	Calc.to wrong point 2 ◆ P
A304000401 1000	Tr	eatment Field Definition	1370				MiscT	1662	П		Calc. using wrong dose 2 ◆ P
1210		Prescription site 1 ◆ P	38.95538	3 33			Simulation Films	1663	П		Calc. not normalized correctly 2 ◆ P
1211		Field name 3 P	1400	П	П		Miss./incorr. pt. info. 4 ◆ T	1670	П	\Box	MiscP
1212	1813	Machine 3 P	1401				Miss./incorr. field info 4 ◆ T	Cutout N	Mea:	surem	ents
1213	++	Type 3 ◆ P	1402	\vdash		Н	Miss./incom, field markers 3 ◆ T	1680	П	ПТ	Used incorr. cutout 2 ◆ P
1214		Modality 1 ◆ P	1403				Miss./incom, SFD 4 ◆ T	1681	Н		Dose incorr. 2 ◆ P
1215		Energy 1 ◆ P	1410	Н	$^{+}$		Misc. T	1682	\vdash	+++	Energy incorr. 1 ◆ P
1216	\Box	MU 3 ◆ P	Block F	abrio	catio	'n		1683	\vdash	+++	Cone size incorr. 2 ◆ P
1217		Dose>±3% 2 ◆ P	1500	TT	П		Blocks cut incorr. 3 ◆ T	1684	Н		SSD incorr. 2 ◆ P
1218	++	Dose < ±3% 3 P	1501	$^{+}$	\vdash	П	Hand set blocks mounted incom. 3 ◆ T	1685	т	++	Depth incorr. 2 ◆ P
1219	\Box	Incorrect wedge angle 2 ◆ P	1502	\vdash	$^{+}$		Custom blocks mounted incom. 3 ◆ T	1686	\vdash	$^{++}$	Isodose line incorr. 2 ◆ P
1220	++	Incorrect wedge orientation 2 ◆ P	1503	$^{+}$	$^{+}$		Missing or late block checks 4 ◆ T	1687	\vdash	+++	Depth of meas, incorr. 2 P
1221		No wedge specified, wedge in plan 1 ◆ P	1510				Misc. T	1688	Н	\Box	Energy or modality used incorr. 1 ◆ P
1222		Incorrect compensator 2 ◆ P	Dose Ca	alcul	ation	5	10 P	1690	П		MiscP
1223	++	No comp specified; comp in plan 1 ◆ P	1600	TT			Incom/miss. Tx site 2 ◆ P		$^{+}$	++	
1224		Incorrect block entered 2 P	1610	Н			Incom/miss, field names 3 ◆ P	Treatme	nt C	hart	78
1225	++	No block specified; blocks in plan 2 P					Hand Calculations	1700	П	ПП	Diagnosis 1 ◆ M
1226	\Box	Incorrect bolus entered 3 ◆ P	1620		П		Incorr. Energy 2 ◆ P	1701	$^{+}$	+	Histology 4 ♦ M
1227		No bolus entered; bolus in plan 3 ◆ P	1621	\vdash	+		Incorr. Field size 3 ◆ P	1702	\vdash		H/P grade 4 ◆ M
1228		Incorrect TSD 3 ◆ P	1622	11			Incorr. SSD 3 ◆ P	1703	\vdash		TNM stage 4 ◆ M
1229		Incorrect gantry angle 4 ◆ P	1623	1			Incorr. depth 2 ◆ P	1704	H		Treatment intent 3 ◆ M
1230		Incorrect collimator angle 4 ◆ P	1624	1			Incorr√miss.tray factor 3 ◆ P	1705	H		Surgery 4 ◆ M
1231		Incorrect field size 4 ◆ P	1625	1			Incom/miss, wedge factor 1 ◆ P	1706	\vdash		Chemotherapy 2 ◆ M
1232	111	Incorrect asymmetric jaw 4 ◆ P	1626	H			Incom/miss, bolus 3 ◆ P	1707	+	111	Previous RT 2 ◆ M
1233	+++	Incorrect couch vertical 4 ◆ P	1627	++	+		Calc w/bolus, bolus not Rx'd 3 ◆ P	1708	++	+++	Special precautions 3 ◆ M
1234	+++	Incorrect couch angle 4 ◆ P	1628	++	++		Wrong coll. scatt. factor 3 ◆ P	1709	+	111	Rx: Date 2 ◆ M

Legend: Significance Level - 1 (most significant), 2, 3, 4, 5 (least significant) • Key Process M - M.D. P - Physics T - Therapist R - Facility RSO Q - QI Coordinator

Footnotes: To include wedges, blocks, bolus, compensator, and no. of fr./day & fr./wk. (if not recorded under Pattern)

² Misadministration (Note: Some Agreement states have more restrictive dose requirements.)

^{*} All information contained in this document is Client-Attorney Privileged.

Uninstended Deviation Reporting Form ¹ For Significance Level 1 and 2 Evens (Recorded on Forms QAI a and QAIb)

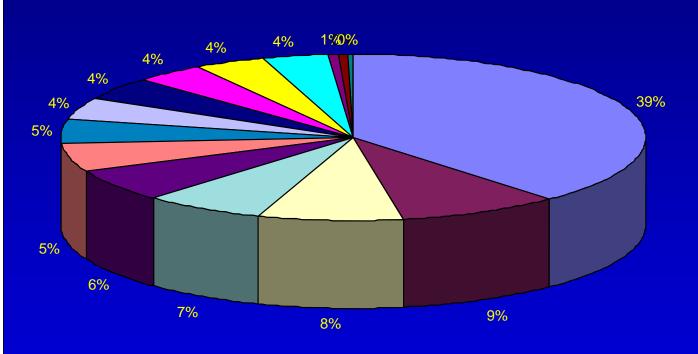
	6 1	- 20	Identified By: Patient Chart UDNo:/ Post-Treatment Uninterded Deciation					
☐ Fre-Treatment Unit	nterded Deciat	ion.						
Cadegory	Prequency	Code	Cadegory	Prequency	Code			
Treatment Planning	8 8	3	Treatment Chart	V 10				
R& V	9		Treatment of Patient	33				
Patient Simulation			Patient Identification					
Block Fabrication Dose Calculation	-		Port Films Quality Assurance	1				
Cutout Measurement	1		Radiation Safety					
Description:								
Evaluation:								
□ ∧ Daily Bose (±)	% 🗆	Δ Weekity I	Dose(±)% 🗖	A Total Dose (±) %			
Recordable Event	0.000	Misadminis		Personnel Over	Military one			
Immediate Corrective : Date of Immediate Acti	ion:	· ·						
☐ Correction of docum.			Adjustment of equipment or machine					
 Adjustment of treatm 	2475.5 SEED - 1165.5		Other:					
Lorg-Term Corrective	Action (Check	all that appl	x):					
☐ Additional training			Increased oversight or supervision					
☐ Improved procedure			Other:					
Approved:								
☐ Physicist beliefs Eat	e	□ 230	initials/date:	☐ MD hits	ds/date:			
P		Physicist o	r RSO Use Only -					
Evaluation:		398	88					
Recommendations:								
Date Received:			Da	ce Feviewed:				

^{\$} Couplies with more and foliant endosceness poliuses regarding licenses along the violations and assembly of unstability deviations to the Quility Management Program. All information in this document and my attachments are Clear - attention. Printing of QAIc.

Name Cancer Center

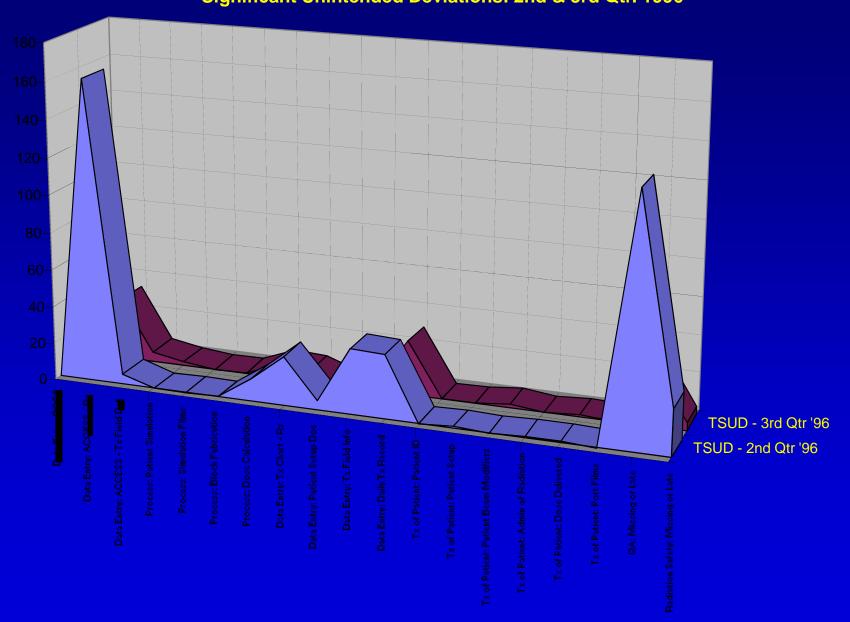
Post-Treatment Quarterly Unintended Deviation Summary Report^{1, 2}

DIF D 25 D25 D4Calendar Quarrer 200_

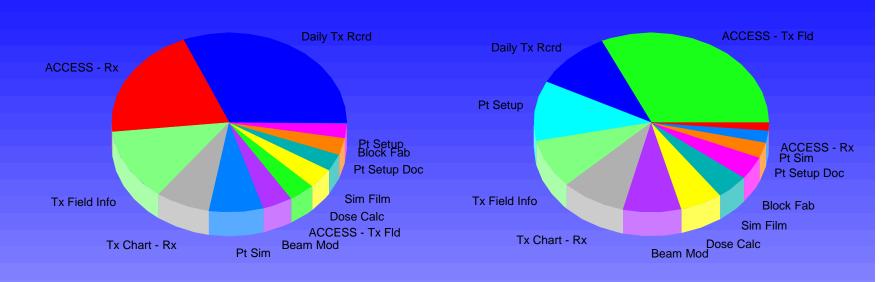

			Er Sign	Prequency By Key Processes?				
Monidored Cadegory	Prequency By Calegory	1	2	3	4	5	Yes	No
Ty Planning								
R & V - Prescription			8			8 8	W 8	
R & V - Tx Field Definition								
Sim - Patient Sebus			8		<u> </u>			
Sim - Films								
Hock Fabrication					į.	i i	i i	
Dose Calc - Hard			8			3 8	N 8	
Dose Calc - Computer								
Curiouri Measurements								
Tx Chart - Rx								
Tx Chart - Patient Seim Doc					j	li li		
Tx Chart - Tx Elektinto	8		8			3 8	N 8	
Tx of Patient - Daily Tx					_			
Tx of Patient - Patient ID	Ç							
Tx of Patient - Part Films								
Tx of Patient - Patient Sebro			Ù.					
Tx of Patient - Beam Modifiers	e e		X.			8 8	y 8	
Admin of Radiation				4				
OA			i e		0			
Radiation Safety								
	Tristakeni.	Idini	C. IND	19191			Contraction of	10121

File in Incalmits Notebook XX - Seaton A.3. Said unjy ti QX.

All information contained at feet document and any attachments are Chief-Interview Privileged.

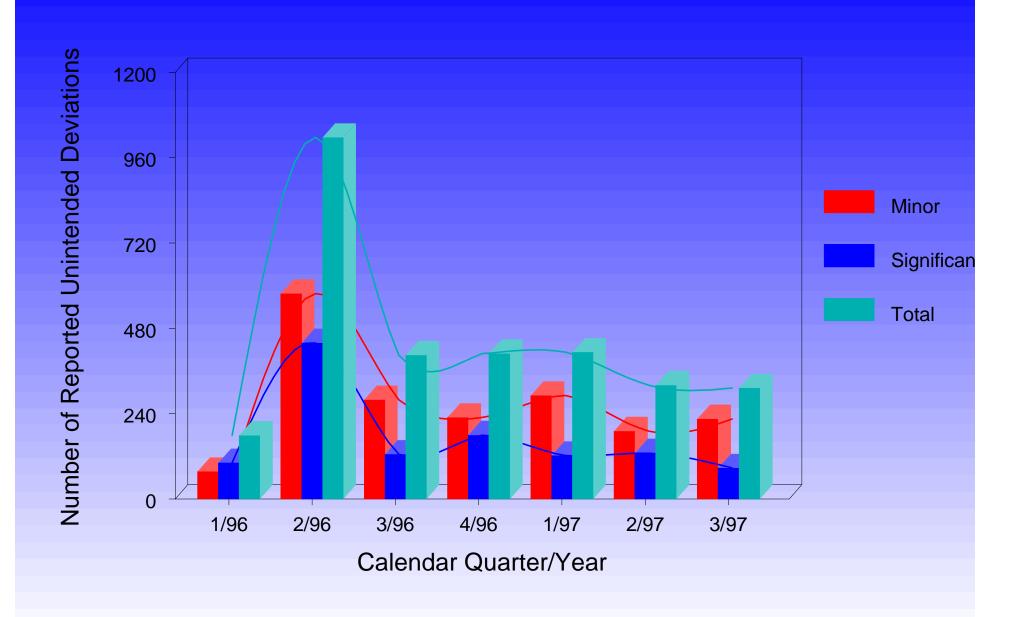

Unintended Deviations	TMLD-2ndQr'99	TSLD-2ndQr'99	Total - 2nd Qr '93	TMLD-3rdQr '96	TSLD-3rdQr'96	Total - 3rd Qr '96
Data Entry: ROCS	0	0	0	0	0	0
Data Entry: ACCESS-Rx						32
Data Entry: ACCESS-Tx Field Def						23
Process: Patient Smulation						23
Process: Smulation Films						21
Process: Block Fabrication						9
Process: Dose Calculation						18
Data Entry: Tx Chart - Rx						21
Data Entry: Patient Setup Doc						9
Data Entry: Tx Field Info						17
Data Entry: Daily Tx Record						125
Tx of Patient: Patient ID						1
Tx of Patient: Patient Satup						1
Tx of Patient: Patient BeemModifiers						10
Tx of Patient: Admin of Radation						0
Tx of Patient: Dose Delivered						1
Tx of Patient: Part Films						18
QA: Mssing or Late	34				33	36
Radation Safety: Missing or Late						5
TOTAL	5/8			27 9		370
ABSOLUTE DIFFEETWEEN QIPS				-299	-313	-647
PERCENTINOTE ASE/DECREASE				-51.7%	-71.3 %	-636%

Minor Unintended Deviations: 3rd Qtr. 1996



- Data Entry: Daily Tx Record
- Process: Simulation Films
- □ Process: Patient Simulation
- □ Data Entry: ACCESS Tx Field Def
- Tx of Patient: Port Films
- Data Entry: Tx Chart Rx
- Data Entry: Tx Field Info
- □ Process: Block Fabrication
- Tx of Patient: Patient Beam Modifier
- Process: Dose Calculation
- □ Data Entry: Patient Setup Doc
- QA: Missing or Late
- Radiation Safety: Missing or Late
- Tx of Patient: Patient ID
- Tx of Patient: Patient Setup

Significant Unintended Deviations: 2nd & 3rd Qtr. 1996



Total Unintended Deviations versus Time

Parameter	2nd Quarter '96	2nd Quarter '97	% Change	Parameter	2nd Quarter '96	2nd Quarter '97
Data Entry: ROCS	0	0	0	Data Entry: Daily Tx Rcd	250	125
Data Entry: ACCESS - Rx	162	9	-1800	Tx of Pt: Pt ID	0	0
Data Entry: ACCESS-Tx Field Def	30	45	+150	Tx of Pt: Pt Setup	2	1
Process: Pt Sim	59	6	-983	Tx Pt: Pt Beam Mod	32	12
Process: Sim Films	24	5	-480	Tx Pt: Admin of Rad	3	0
Process: Block Fab	20	4	-500	Tx of Pt: Dose Deliv	1	0
Process: Dose Calc	29	8	-363	Tx of Pt: Port Films	23	3
Data Entry: Tx Chart-Rx	60	25	-240	QA: Missing/Late	166	24
Data Entry: Pt Setup Doc	23	3	-768	RS: Missing/Late	28	6
Data Entry: Tx Field Info	105	44	-239			

Summary of Total Unintended Deviations

Reported Misadministration Rate In Radiation Oncology

• Published rates³¹ for *reported* misadministrations in therapeutic radiation oncology is 0.0042 percent (4.2/100,000 administrations) based upon 20 treatments/patient for NRC regulated states <u>only</u>. Based upon internal NRC documents, it is speculated that the rate may be as high as 0.04 percent.

³¹NRC memorandum dated March 8, 1993: Data based on information obtained from the American College of Radiology (*Manpower Committee, Patterns of Care Study*, and *Commission of Human Resources*). Additional reference from Institute of Medicine (*Radiation in Medicine - A Need For Regulatory Reform*), 1996.

Calculated Error Rates

Paper-Based Model

- Based upon the total number of treatment fields delivered as recorded by R&V at 17 radiation oncology centers and the total number of unintended deviations self-reported by the system, excluding the initial two quarters for the "learning curve effect", the overall average error rate for both minor and significant unintended deviations within the system was approximately 0.052% (5.2 in 10,000 patient treatments).
- The minor unintended deviation reporting rate for the same period was approximately 0.034%.

Measured vs Published Misadministration Rate

Radiation Oncology

- The significant unintended deviation reporting rate that <u>could</u> lead to a misadministration was calculated to be approximately 0.018% (1.8 in 10,000 patient treatments).³²
- Based upon the model's experience of one reported misadministration (having no deterministic or measurable effect) over 2 years, the measured misadministration rate was 0.017%.

³²Reporting rate is based on the number of significant interactions occurring in the treatment delivery process that could lead to a misadministration (criteria based on 10 CFR Part 35) vs the total number of treatment fields administered for 17 centers.

Measured vs Published Misadministration Rate Radiation Oncology

- When compared to what the NRC speculates is the actual misadministration rate of 0.04 (4 in 10,000), this rate is a factor of 2.35 lower.
- Though this program helped in minimizing the occurrence of misadministrations, the overall focus was to reduce the number and nature of all errors in the therapy process.

Cost Benefit Analysis

Paper-Based Model

- After implementation of the QA/Medical Error Reduction Program, the 17 radiation oncology centers experienced a reduction of 326% in error rate from 3/96 to 12/97 (not including the "learning curve effect"):
 - Direct cost savings of approximately \$450,000
 - Direct & indirect cost savings of approximately \$600,000

Cost Benefit Analysis

Paper-Based Model

- Experience with the one reported misadministration that occurred at a center in Florida between 3/96 and 12/97 (with no measurable effect) resulted in a total direct cost (man-hours, travel, etc.) of approximately \$25,000.
- Physician malpractice insurance premiums for the 17 oncology centers were reduced by 10%.

Summary of Results Paper-Based Model

- Overall average error rate was 0.052% (SL 1 5)
- Calculated misadministration rate³³ was 0.018%
- Actual misadministration rate was 0.017%
- NRC misadministration rate was 0.042% (a factor of 2.35 higher than actual misadministration rate)
- Reduced overall error rate by 326% over 21 months
- Direct cost savings of \$450,000
- Direct & indirect cost savings of \$600,000
- Other significant incidents averted by using program

³³ Misadministration criteria based on definitions found in NRC 10CFR35.2, rev. 1996.

Other Center Studies Paper-Based Model

Summary of Results - 1998

Oncology Company With 10 Freestanding Centers

- Three significant radiation treatment errors, that if left undetected would have required reporting to the State and notifying the referring physician and patient, were caught.
- A misadministration at one center, involving possible civil penalties and sanctions, was mitigated by the State by demonstrating that the error leading to the misadministration was isolated based on empirical data.

Other Center Studies Paper-Based Model

Summary of Results - Calendar Year 2002

Cancer Center #1

- Aside from the 1st quarter "learning curve", total errors decreased by **70.5%** (334 vs 99) between the 2nd and 3rd quarters.
- Total errors decreased by **27.3%** (99 vs 72) between the 3rd and 4th quarters.
- The total decrease in errors between the 2nd and 4th quarters was **78.4**% (334 vs 72).

Cancer Center #2

- Aside from the 1st quarter "learning curve", total errors decreased by **66.4%** (113 vs 38) between the 2nd and 3rd quarters.
- Total errors decreased by **18.4%** (38 vs 31 between the 3rd and 4th quarters
- The total decrease in errors between the 2nd and 4th quarters was 72.6% (113 vs 31).

Lessons Learned Paper-Based Model

• Limitations

- Inefficient
- Time intensive
- Intrusive
- Complex industrial engineering model
- Requires paper trail

Weaknesses

- Learning error codification system
- Triggering required regulatory actions
- Faxing of errors
- Tracking UDs
- Management review
- Trending and analysis
- Report generation
- Timely action
- Credible root cause analysis

Software-Based Model

- What is needed?
 - Automated tracking of errors
 - Non-intrusive data gathering
 - Preset standardized gathering
 - Immediate analysis of errors
 - Short and long-term corrective actions
 - Tracking and trending of errors
 - Automated regulatory report launching

MERP Program

- Monitored Areas
 - Clinical
 - QA
 - Radiation Safety
- Identification and Tacking of *Errors*
 - Preset standardized error codes
 - Classification of pre and posttreatment errors
 - Assignment of severity levels (I V)
 - Designation of clinical significance
 - Designation of significant unintended deviation
 - "Near Miss" categorization
 - Sentinel events (internal and JCAHO reportable)
 - Instant analysis of patterns and trends

Identification and Tacking of Violations

- Preset standardized unintended deviation codes
- Assignment of severity levels (I V)
- Recordable events
- Misadministrations (medical events)
- Regulatory violations
- Possible regulatory violations
- Instant analysis of patterns and trends

MERP Program

- Step-By-Step Root Cause Analysis
 - Determination of credible root cause analysis
 - Identification of causal factors
 - Identification of opportunities for improvement
- Action Plan Road Map
 - Risk-reduction strategy
 - Short-term corrective action
 - Long-term corrective action
 - Assignment of responsible individuals
- Patient Dose Error Calculation Wizard
 - Calculates % error in daily, weekly & total doses

- Patient Dose Error Calculation Wizard (cont.)
 - Automatically triggers levels for report generation
 - JCAHO root cause analysis and action plans
 - State regulatory notifications
- Review and Approval
 - Queue action plan(s) for review and approval
 - Accept or reject routine corrective action(s)

MERP Program

- Reports and Chart Generation
 - Generate reports showing characterization of errors and corrective actions
 - Show charts stratifying error types and severity levels
 - Select time intervals for charting of data
- Audit Compliance Tool
 - Use MERP to inspect regulatory performance
 - Complies with State radiation safety requirement for annual review
 - Meets State QMP rule for annual review
 - Follows CMS compliance objectives
 - Complies with JCAHO standards

MERP Program

Customization Features

- Customize and create data collection areas for performance improvement priorities
 - Categories
 - Subcategories
 - Attributes
- Designate who reviews/approvals routine errors and corrective actions
- Assign which errors violate State requirements
- Designate severity levels, clinically significant, and significant unintended deviations

Standards/Requirements Referenced by Code

- JCAHO 2006 patient safety standards show basis for question
- ACR and ACRO standards demonstrate benchmark for measuring performance
- CRCPD (Agreement State) recommended regulations (as of 9/04) show legal text

MERP Implementation Strategy Preparation

- Step #1 Benchmark Procedures
 - Created manual
 - Included step-by-set processes
 - Covered technical delivery system
 - QA
 - Radiation safety
 - QMP

- Step #2 Training
 - Provided classroom hours
 - 15 hours in procedures
 - 6 hours in MERP
 - Presented over 1 hour lunch break
 - Took 2 months
 - Issued category 'A' credit thru ASRT
 - Met annual state radiation safety training requirements

MERP Implementation Strategy

Phased Rollout

- Step #3 Superusers
 - Designated key point guards
 - Controlled data input
 - Tracked status of UDs
 - Tracked completion of corrective action plans

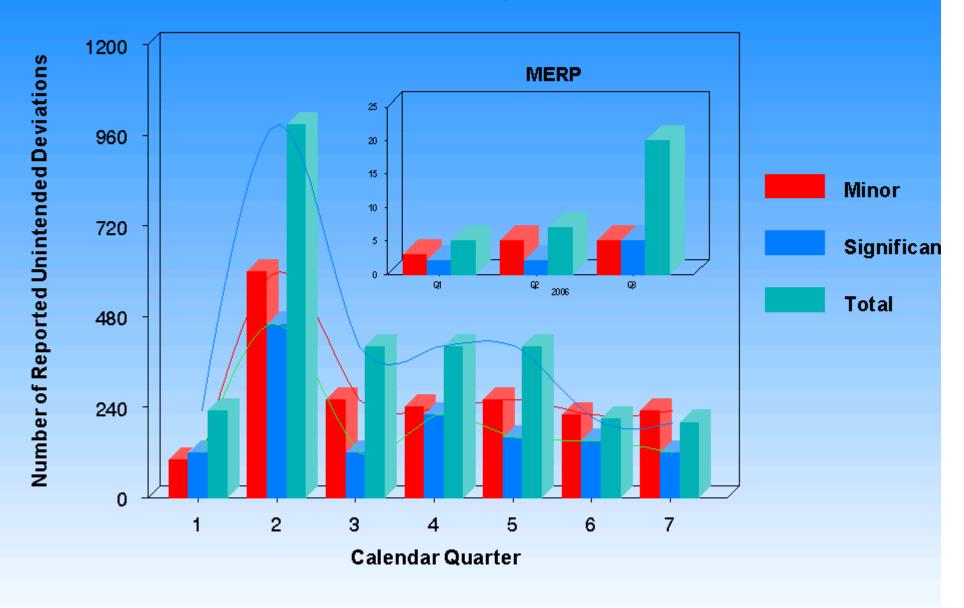
- Step #4 Current Phases
 - Group 1
 - Therapists
 - CT/X-ray technologists
 - Physics (physicists & dosimerists)
 - Billing
 - Group 2
 - Radiation oncologists
 - Group 3
 - Admissions/registration staff

MERP Implementation Strategy

Future Plan

- Step #5 Future Phases
 - Group 4
 - Nurses and aides
 - PET/Nuc med
 - MRI
 - PET/CT (new machine)

- Step #6 Medical Oncology
 - Develop software
 - Cover areas
 - Infusion
 - Lab
 - Research
 - Follow RO blue print rollout


RO MERP

Unintended Deviation (UD) Reporting Form

Date(s) of Occu	rrence:	Date Identifi	Date Identified:						
Identified by:		Patient ID #	Patient ID #:						
Patient Name: _		UD #:							
	Patient Rela	ited	Non-Patio	ent Related					
Clinical	QA 🔲	RS 🔲	QA 🗌	RS 🔲					
Pre-Tx	Post-Tx	Affected Tx							
Description of U	JD:								
Initials:		Date:							

Summary of Total Unintended Deviations

Paper Based System

MERP Results

Lessons Learned With MERP Software Model

• Upfront Homework

- History of error reduction important
- Why must we embrace to be competitive
- Philosophy of "goodness"
- Non-punitive actions will be watched by staff
- Incentives to encourage reporting a must

Practical Implementation

- Rewards system must be established
- Superusers serve as point guards
- Phased in approach minimizes overload
- Initial paper recording of UDs prevents corrupt/inaccurate data entry
- Brief weekly group meetings serve as bulletin board for errors
- Individuals must be assigned responsibility for drafting procedures required by corrective action plans
- Track closure of corrective action plans

Conclusion

- Based on the experience gained from the clinical application of the paper-based model at over 42 centers throughout the country (29 described in this presentation), a software-based medical error reduction program (MERP) was developed.
- In it's first clinical test, **MERP** provides a non-intrusive and efficient means to address medical error reduction in a systematic manner, while minimizing the occurrence of regulatory violations.
- The initial results from MERP appear very promising.